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Local properties of extended self-similarity in three-dimensional turbulence
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Using a generalization of extended self-similarity we have studied local scaling properties of incompressible
homogeneous isotropic three-dimensional turbulence in a direct numerical simulation. We have found that
these properties are consistent with log-normal-like behavior of the velocity increments with moderate ampli-
tudes for space scalesr beginning from Kolmogorov lengthh up to the largest scales, and in the whole range
of the Reynolds numbers: 50<Rl<459. The locally determined intermittency exponentm(r ) varies withr; it
has a maximum at scaler 514h, independent ofRl .
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So-called extended self-similarity~ESS! in incompress-
ible turbulent flows is intensively studied in recent yea
~see, for instance,@1–8# and references therein!. The ESS
implies scaling relation between moments of different ord
For example, for absolute value of longitudinal velocity i
crements over separationr in the inertial range the ESS
means

^ur
q&;^ur

p&r(q)/r(p), ~1!

where the scaling exponentr(q) is some function ofq. It is
shown in numerous experiments and numerical simulati
that the range of applicability of the ESS is substantia
larger than that for ordinary self-similarity, and the ESS c
exist even for situations where the ordinary self-similar
cannot be observed at all.

The aim of the present paper is twofold. The first is
study local properties of ESS defined as

^ur
p&;^ur

3&zp(r ), ~2!

wherezp(r ) are depending onr. The local approach allows
to develop some old ideas. At past a representationzp5p/3
2mp(p23)/18 derived from a log-normal model, wa
shown to hold for the values averaged over an inertial in
val of certain extension. Here we will show that the rep
sentation holds locally~i.e., with zp(r ) andm(r ) depending
on r ) in the above defined sense, ranging from the diss
tive Kolmogorov lengthh to integral scale for any observe
Reynolds number in direct numerical simulations up toRl

5459.
The second aim is to examine the implication of the var

tion of the local intermittency exponentm(r ). It is often
mentioned that there is no characteristic length in turbulen
so that the structure functions obey a power law in the in
tial region and the associated scaling exponents are inde
dent of scale. However, a recent study of turbulence rev
the existence of the structures@9#. A question, then, naturally
arises as to whether there may be any characteristic le
ascribed to the structures@10#. The peculiar variation ofm(r )
with respect tor, observed in the paper, indicates that there
a certain length affecting the ESS.
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The She-Leveque model@11# is also very popular in the
last years. For this model the local exponent is expresse
a general form,

zp~r !5
p

3
~12g!1

g

12b
@12bp/3#, ~3!

whereb and g can be also supposed to depend onr; b(r )
and g(r ) could be, in principle evaluated by plotting th
local exponentzp(r ) againstp with r fixed. Since here we
focus the lower order structure functions that are compu
more reliably than the higher order ones, the comparison
the data with the formula is done using a simpler log-norm
model with one parameter. If one could compute the hig
order structure functions, the comparison should be m
with the She-Leveque model.

Let us begin with the derivation of useful formulas on t
basis of the log-normal distribution of the dissipation rate« r
averaged over spheres of radiusr,

P~« r !5
« r

21

A2ps2
expS 2

~ ln « r2a!2

2s2 D , ~4!

from which we obtain

^« r
q&

^« r&
q

5es2q(q21)/2 ~5!

that results in a parameter-independent type of ESS@1,2# of
turbulent energy dissipation

^« r
q&

^« r&
q

5S ^« r
p&

^« r&
pD [q(q21)]/[ p(p21)]

. ~6!

What is the equivalent relation for the velocity incremen
According to the refined similarity method@12–16# ur

;(r« r)
1/3 in the inertial region, whileur;r« r

1/2 in the dissi-
pative region. If we take regions of scaler between the in-
ertial and dissipative regions, some are described by
former relation, while the others are by the latter one, so t
©2001 The American Physical Society04-1
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ur is related to« r in a probabilistic way. For the sake o
simplicity we assume a general relation

ur5c~r !« r
1/a(r ) ~7!

in a mean sense. Herea(r ) is a function ofr and coefficient
c(r ) does not necessarily scale withr. Substituting Eq.~7!
into Eq. ~6! yields

^ur
q&

^ur
a&q/a

5S ^ur
p&

^ur
a&p/aD [q(q2a)]/[ p(p2a)]

. ~8!

Note that this expresses how the structure functions of
ferent order are related to each other with value ofr fixed.
This relation can be considered as a functional equation
a solution to this equation is

^ur
q&;^ur

a(r )&q/a(r )1b(r )q„q2a(r )…, ~9!

where b(r ) is an arbitrary function ofr. Relation ~9! is a
generalization of ordinary ESS@1,2#. The difference between
ordinary ESS and relation~9! is that parameters used in E
~9! can depend onr. Therefore we will call this type of ESS
as extendedlocal self-similarity ~ELSS!.

To be consistent with the present data processing
express theqth order structure function in terms of th
third order structure function as Eq.~2!. Making use of Eq.
~9!, we are led to

zq~r !5
q

3
2

m~r !

18
q~q23!, ~10!

where

m~r !52
6b~r !a~r !

11a~r !@32a~r !#b~r !
. ~11!

In the frame of ELSS the exponentzq depends also onr, and
below we compare Eqs.~2! and ~10! with data of DNS for
different values ofr. It should be noted that the ELSS e
pression~10! holds for any value ofa(r ), so that the expres
sion can be compared with the data for any scale separa
without paying attention to which region is being consider

We have performed a series of direct numerical simu
tions ~DNS’s! of incompressible homogeneous isotropic tu
bulence using a resolution up to 10243. Reynolds numbers
range from 50 to 459@18#. The random force is statisticall
homogeneous, isotropic and Gaussian white, and applie
the band 1&k&3 in which the forcing spectrum is constan
The code uses the pseudospectral method and the fourt
der Runge-Kutta-Gill one. Initial conditions are Gaussi
random velocity fields with the energy spectrumE(k)
}k4exp@22(k/k0)

2#, and the resolution isN52563 for Rl

569, N55123 for Rl5125,176,259, andN510243 for Rl

5374,459. After about two eddy turnover times all the tu
bulent fields attained statistically steady states, which w
confirmed by observing the time evolution of the total ene
and enstrophy, and the skewness of the longitudinal velo
derivative. For Rl5459 run, the Reynolds number wa
01630
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gradually increased through two steady states. The cond
kmaxh.1 for the resolution of DNS is satisfied for most run
but that ofRl5459 is slightly less than unity. The statistic
averages were taken as the time average over tens of
over times for lower Reynolds numbers and over a few tu
over times for the higher Reynolds numbers; over
samples during 2.9 eddy turnover times forRl5374 and
over 31 samples during 1.4 eddy turnover timesRl5459.
Computations withRl<259 have been done using a vect
parallel machine with 16 processors, Fujitsu VPP700E
RIKEN, and those for higherRl , using Fujitsu VPP5000/56
with 32 processors at Nagoya University Computation C
ter.

Now turn to the data analysis. Figure 1 is a plot
^ur

2&/( «̄h)2/3 against r /h for various values of Reynolds
number, where«̄ is the average dissipation rate, andh
5(n3/ «̄)1/4 with molecular viscosityn. Here a straight solid
line proportional tor 2/3 is inserted. It is remarkable that a
data points collapse on a single line in the dissipative reg
which indicates that all simulations are carried out with t
good resolution at small scales. Although the slope of^ur

2&
could be estimated for large Reynolds numbers as seen
Fig. 1, the scaling exponents of higher order structure fu
tions as well as low order ones for small Reynolds numb
can be reliably evaluated only on the basis of the E
method, i.e., by plottinĝur

p& against̂ ur
3& @1–3#.

In order to know ther dependence ofzp(r ) for various
Reynolds numbers, we prepare Fig. 2, in whichzp(r ) with
p54,6,8 are depicted forRl569,125,259,374, and 459
~The eighth order structure function is confirmed to conve
statistically.! Note that the data for scales larger than integ
scales are not shown, because a universal property of tu
lence is not expected in those data. It is remarkable that th
is a dip at aboutr /h;10, and that it grows in depth with
increasing Reynolds number. The exception is the caseRl

569, where a dip does not appear. As the scale incre
beyond the dip,z4(r ) and z6(r ) tend to approach constan
values, although the corresponding data forRl5259 behave
in a slightly different way from other cases. Forp58 the

FIG. 1. A plot of ^ur
2& divided by («̄h)2/3 vs r /h for various

values of Reynolds number. An inserted solid line is proportiona
r 2/3. Notice that all data points collapse on a single curve in
dissipative region.
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situation is the same as forp56, but the variation is larger
It is of interest to notice that for the largest Reynolds num
459 the flat region is observed in the interval 100&r /h
&300, which may be identified with the inertial region. F
smaller Reynolds numbers it is a little difficult to find the fl
region. ForRl569 we see the flat region in the interval 1
&r /h&30, and the corresponding slopes forp>4 are larger
than those forRl5459. However, the flat region at smalle
scales forRl569 is different from one at larger scales f
Rl5459.

Before we compare the formula~10! with the data, the
validity of the log-normal distribution of the velocity incre
ment should be ensured. The probability density funct
~PDF! of the intermediate amplitudes is certainly log norm
In order to determine the range of the log normality, w
calculated a peak positionur* (p) of ur

pP(ur) at r /h524 for
Rl5121. The PDF is satisfactorily fitted by a log-norm
curve for ur* (p51.5)<ur<ur* (p56). On the other hand
the PDF of« r is found to be log normal in much wide
interval. If we employ the same notation as above, the
normality of « r holds at least in the interval of« r* (p524)
<« r<« r* (p56) for the same Reynolds number. If the r
fined similarity hypothesisur

3;r« r is assumed to hold fo
any amplitude, the corresponding PDF ofur should be log
normal for ur* (p5212)<ur<ur* (p518), which is much
wider than the observed log-normal interval. The reason
the discrepancy is that the refined similarity holds only
the intermediate amplitudes of« r in agreement with the ob
servation@15–17#. Hence, the use of the log-normal expre
sion for the exponent~10! is completely justified for inter-
mediate values ofp.

In order to analyze a nature of ther dependence of the
local slopezp(r ), we rewrite Eq.~10! in the following form:

zp

p
5S 1

3
1

m~r !

6 D2
m~r !

18
p. ~12!

What is the range ofp? To decide the range we calculate
zp(r ) for various values ofp at units of 0.1 atr /h524 for
Rl5121, and plottedzp /p againstp. Although such a plot is

FIG. 2. The ELSS exponentsz4(r ), z6(r ), and z8(r ) against
r /h for various values of Reynolds number. The data with sca
larger than integral scales are deleted from the figure.
01630
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not given here,zp /p is fitted by a straight line for 1<p
<6. The curve is deviated upward from the straight fitti
line for p>7 and downward for 0,p,1. Hence the com-
parison will be made in the range 1<p<6, but the intermit-
tency coefficientm(r ) estimated there plays a significant ro
to represent even the whole intermittency effect.

s

FIG. 3. The ELSS exponentszp(r )/p againstp obtained in the
DNS for different values ofr and for different Reynolds numbers
~a! Rl569, ~b! Rl5259, and~c! Rl5459. Straight lines, which are
the best fit line for 1<p<6, indicate agreement of the data with th
representation~12!. The inset shows local intermittency expone
m(r ) calculated using the data.m1(r ) corresponds to calculation
using the ‘‘slope’’ method~described in the text!, andm2(r ) does to
those using the ‘‘intersection’’ method. Calculated Taylor lengthl
and the integral lengthL are marked for convenience.
4-3
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Figure 3~a! shows a curvezp(r )/p vs p for several values
of r /h with Rl569. Straight lines in this figure are the be
fit lines for 1<p<6. The data points forp57, which are not
included for the comparison, are slightly deviated from t
log-normal lines as mentioned above. Intermittency ind
m(r ), can be calculated from this figure using the slope
the fitting straight lines or the intersection point of the fittin
straight lines with vertical axis@cf. Eq. ~12!#. The calculated
values ofm(r ) are shown in the inset of the Fig. 3~a! (m1
corresponds to calculations using the ‘‘slope’’ metho
whereasm2 are given by the ‘‘intersection’’ method.! In the
plot of m(r ) Taylor microscalel and an integral scaleL are
marked for convenience.~We have confirmed the well
known prediction@19# l/h5151/4Rl

1/2 and L/h;Rl
3/2.! For

Reynolds numbers 259 and 459 we have obtained sim
pictures~ Figs. 3b and 3c!. Other Reynolds numbers give th
same result.

As seen from Figs. 3~a! to 3~c!, m(r ) substantially de-
pends onr with a typical ‘‘two-maxima’’ shape. Even for
Rl569 in Fig. 3~a! there is a small peak aroundr /h;10.
Local maximum of them(r ) at smaller scales exhibits a fe
interesting properties.~I! For Rl550 the maximum is not
observed, and the first appearance of the maximum occu
Rl between 50 and 69.~II ! A position of this maximum
~normalized byh) is independent of Reynolds number, a
takes valuel 1'14h, which is actually the beginning of th
dissipative region.~III ! Value of m(l 1) scales withRl as
m(l 1);Rl

0.26. ~IV ! The scalel is located on the right de
scending hill.
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The flat region wherem(r ) is constant appears in betwee
r /h;100 andr /h;300 for the highest Reynolds numbe
Rl5459@see Fig. 3~c!#. In such an intervalm(r )'0.25. This
value is consistent with those known in literature for obs
vations corresponding to very large Reynolds num
@20,21#.

It should be noted that strong tubelike vortices are
lieved to be sparsely distributed in space in fully develop
turbulence@9,22#. Those vortices are frequently assumed
Burgers’ vortex with mean radius 10h @22#. The energy dis-
sipation takes place strongly around those vortices. Th
fore extreme intermittency of the energy dissipation at t
scale is consistent with the observation of the maximum
m(r ) at scaler 514h. On the other hand, the usual scalin
region, wherezp(r ) as well asm(r ) are independent of scal
in a certain interval of scale, can be seen only for larg
Reynolds number,Rl5459 in the present work. Such a sca
ing region is located forr .l; in our simulation the scaling
region starts from approximately 2.5l.
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