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Local properties of extended self-similarity in three-dimensional turbulence
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Using a generalization of extended self-similarity we have studied local scaling properties of incompressible
homogeneous isotropic three-dimensional turbulence in a direct numerical simulation. We have found that
these properties are consistent with log-normal-like behavior of the velocity increments with moderate ampli-
tudes for space scaleseginning from Kolmogorov lengthy up to the largest scales, and in the whole range
of the Reynolds numbers: 5(R, <459. The locally determined intermittency expongiit) varies withr; it
has a maximum at scafte= 147, independent oR, .
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So-called extended self-similarifESS in incompress- The She-Leveque modgll] is also very popular in the
ible turbulent flows is intensively studied in recent yearslast years. For this model the local exponent is expressed in
(see, for instance,1-8] and references therginThe ESS  a general form,
implies scaling relation between moments of different order.

For example, for absolute value of longitudinal velocity in- P Y p/3
crements over separatianin the inertial range the ESS gp(r)_§(1_7)+ 1_3[1_5 1 )
means

where 8 and y can be also supposed to dependrpB(r)
(uf)~(up)P(@ee), (D and y(r) could be, in principle evaluated by plotting the
) ) _ ) local exponent/,(r) againstp with r fixed. Since here we
where the scaling exponep{q) is some function of). Itis  focus the lower order structure functions that are computed
shown in numerous experiments and numerical simulationg,ore reliably than the higher order ones, the comparison of
that the range of applicability of the ESS is substantiallythe gata with the formula is done using a simpler log-normal
larger than that for ordinary self-similarity, and the ESS canmnode| with one parameter. If one could compute the higher
exist even for situations where the ordinary self-similarity g der structure functions, the comparison should be made

cannot be observed at all. _ ~ with the She-Leveque model.
The aim of the present paper is twofold. The first is to | et ys begin with the derivation of useful formulas on the
study local properties of ESS defined as basis of the log-normal distribution of the dissipation rate
(uf’)~<uf’)5p(f), @ averaged over spheres of radiys
. et (Ing,—a)?
where {(r) are depending on. The local approach allows P(e,)= ——exp — —————|, %)
to develop some old ideas. At past a representatjsnp/3 2mo? 202
—up(p—3)/18 derived from a log-normal model, was
shown to hold for the values averaged over an inertial interfrom which we obtain
val of certain extension. Here we will show that the repre-
sentation holds locallyi.e., with £,(r) and u(r) depending (er) _ _o2q(q-1)12 5
onr) in the above defined sense, ranging from the dissipa- (&) —€ ®)

tive Kolmogorov lengthy to integral scale for any observed
Reynolds number in direct numerical simulations UpRO  that results in a parameter-independent type of ESS of

=459. o i o _ turbulent energy dissipation
The second aim is to examine the implication of the varia-
tion of the local intermittency exponeni(r). It is often (s9) (eP) [a(a—1)1/[p(p—1)]
mentioned that there is no characteristic length in turbulence, ! :( ! ) (6)
so that the structure functions obey a power law in the iner- (1% \(g,)P

tial region and the associated scaling exponents are indepen-

dent of scale. However, a recent study of turbulence reveald/hat is the equivalent relation for the velocity increment?
the existence of the structurg®. A question, then, naturally According to the refined similarity methofil2—-14 u,
arises as to whether there may be any characteristic length (re,)Y in the inertial region, whileur~rs,1’2 in the dissi-
ascribed to the structur¢$0]. The peculiar variation of(r) pative region. If we take regions of scaldetween the in-
with respect ta, observed in the paper, indicates that there isertial and dissipative regions, some are described by the

a certain length affecting the ESS. former relation, while the others are by the latter one, so that

1063-651X/2001/64.)/0163044)/$20.00 64 016304-1 ©2001 The American Physical Society



FUKAYAMA, NAKANO, BERSHADSKII, AND GOTOH

u, is related toe, in a probabilistic way. For the sake of
simplicity we assume a general relation

(@)

in a mean sense. Hetgr) is a function ofr and coefficient
c(r) does not necessarily scale with Substituting Eq(7)
into Eq. (6) yields

(u® _(

()

uy=c(r)g e

(up)

()Pl

[a(a—a)J/[p(p-—a)]
) ®

Note that this expresses how the structure functions of dif-

ferent order are related to each other with value diked.
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This relation can be considered as a functional equation and FiG. 1. A plot of (u?) divided by )23 vs r/4 for various

a solution to this equation is
€)

whereb(r) is an arbitrary function of. Relation(9) is a
generalization of ordinary ES3,2]. The difference between

(ud)~ (uetya/a(n +bNa@-a(r)),

ordinary ESS and relatio®) is that parameters used in Eq.

(9) can depend on. Therefore we will call this type of ESS
as extendedbcal self-similarity (ELSS).

values of Reynolds number. An inserted solid line is proportional to
r?3, Notice that all data points collapse on a single curve in the
dissipative region.

gradually increased through two steady states. The condition
Kmax7>1 for the resolution of DNS is satisfied for most runs,
but that of R, =459 is slightly less than unity. The statistical
averages were taken as the time average over tens of turn-

express thegth order structure function in terms of the over times for the higher Reynolds numbers; over 45

third order structure function as E(). Making use of Eq.
(9), we are led to

_9 w(r)

{q(r)=3~ g 9(a=3), (10

where

6b(r)a(r)
1+a(r)[3—a(r)]b(r)’

w(r)=— (11

In the frame of ELSS the exponefy depends also on and
below we compare Eq$2) and (10) with data of DNS for

samples during 2.9 eddy turnover times fef=374 and
over 31 samples during 1.4 eddy turnover tinks=459.
Computations withR, <259 have been done using a vector
parallel machine with 16 processors, Fujitsu VPP700E at
RIKEN, and those for higheR, , using Fujitsu VPP5000/56
with 32 processors at Nagoya University Computation Cen-
ter.

Now turn to the data analysis. Figure 1 is a plot of
(uf)/(s_n)z’3 againstr/» for various values of Reynolds
number, wheree is the average dissipation rate, and
= (v%/€)Y* with molecular viscosityv. Here a straight solid
line proportional tor?? is inserted. It is remarkable that all
data points collapse on a single line in the dissipative region,

different values ofr. It should be noted that the ELSS ex- Which indicates that all simulations are carried out with the

pression(10) holds for any value of(r), so that the expres-

good resolution at small scales. Although the slopéugf

sion can be compared with the data for any scale separatiotould be estimated for large Reynolds numbers as seen from

without paying attention to which region is being considered Fig. 1, the scaling exponents of higher order structure func-
We have performed a series of direct numerical simulations as well as low order ones for small Reynolds numbers

tions (DNS’s) of incompressible homogeneous isotropic tur-can be reliably evaluated only on the basis of the ESS

bulence using a resolution up to 1§2&Reynolds numbers method, i.e., by plottingu?) against(u®) [1-3].

range from 50 to 45918]. The random force is statistically In order to know ther dependence of,(r) for various

homogeneous, isotropic and Gaussian white, and applied ®eynolds numbers, we prepare Fig. 2, in whigfir) with

the band (k=3 in which the forcing spectrum is constant. p=4,6,8 are depicted foR,=69,125,259,374, and 459.

The code uses the pseudospectral method and the fourth difhe eighth order structure function is confirmed to converge

der Runge-Kutta-Gill one. Initial conditions are Gaussianstatistically) Note that the data for scales larger than integral

random velocity fields with the energy spectruB(k)
xk*exd —2(k/ky)?], and the resolution isN=256" for R,
=69, N=512 for R, =125,176,259, andtl=1024 for R,

scales are not shown, because a universal property of turbu-
lence is not expected in those data. It is remarkable that there
is a dip at about/#n~10, and that it grows in depth with

=374,459. After about two eddy turnover times all the tur-increasing Reynolds number. The exception is the éjse
bulent fields attained statistically steady states, which were=69, where a dip does not appear. As the scale increases
confirmed by observing the time evolution of the total energybeyond the dipZ4(r) and g(r) tend to approach constant
and enstrophy, and the skewness of the longitudinal velocityalues, although the corresponding dataRQe= 259 behave
derivative. For R,=459 run, the Reynolds number was in a slightly different way from other cases. Fpr=8 the
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FIG. 2. The ELSS exponent(r), {s(r), and {g(r) against 0.38 —— i i i i
r/ 5 for various values of Reynolds number. The data with scales /n=5 o Ry =259
larger than integral scales are deleted from the figure. 0.36 ,/r,;z_lg? o ]
N T 34 f
situation is the same as fpr=6, but the variation is larger. 03
It is of interest to notice that for the largest Reynolds number & 032
459 the flat region is observed in the interval ¥U» X 03k
=300, which may be identified with the inertial region. For 0.3 025
smaller Reynolds numbers it is a little difficult to find the flat 0.28 Losal X
region. ForR, =69 we see the flat region in the interval 10 011 ) R
<r/5=30, and the corresponding slopes for 4 are larger 026 [00 . MO~ ]
than those foR, =459. However, the flat region at smaller 0.24 1 10,100 1000 , , (b)
scales forR, =69 is different from one at larger scales for o 2 3 4 5 6 7
R, =459. P
Before we compare the formuld0) with the data, the
validity of the log-normal distribution of the velocity incre- 0.38 1 9 o Rymd59
ment should be ensured. The probability density function 036 L - /m=237 —&—
(PDP of the intermediate amplitudes is certainly log normal. =501 —o-
In order to determine the range of the log normality, we 0.34
calculated a peak positianf (p) of uPP(u,) atr/»=24 for < 032 |
Ry,=121. The PDF is satisfactorily fitted by a log-normal = ™ |085p
curve foruy (p=1.5)<u,<uf(p=6). On the other hand, 03 -o?ég_
the PDF ofe, is found to be log normal in much wider 028 | 0.2 ] R
interval. If we employ the same notation as above, the log ) o‘(;f_ ) — - N
normality of &, holds at least in the interval of’ (p=—4) 0.26 -0-0(5)- ) 1
<g,<ef(p=6) for the same Reynolds number. If the re- 1 10 ;4100 1000 )
o 0.24 : ' : : - . -
fined similarity hypothesisi>~re, is assumed to hold for o 5 3 4 5 6 7

any amplitude, the corresponding PDF wgf should be log
normal for uf (p=—12)<u,<u; (p=18), which is much

p

wider than the observed log-normal interval. The reason for FIG. 3. The ELSS exponents,(r)/p againstp obtained in the
the discrepancy is that the refined similarity holds only forDNS for different values of and for different Reynolds numbers;
the intermediate amplitudes ef in agreement with the ob- (& R\=69,(b) R,=259, and(c) R, =459. Straight lines, which are
servation[15—17. Hence, the use of the log-normal expres-the best fit line for & p=<#6, indicate agreement of the data with the

sion for the exponentl0) is completely justified for inter- representatior{12). The inset shows local intermittency exponent
mediate values of wu(r) calculated using the data.,(r) corresponds to calculations

In order to analyze a nature of thedependence of the using the “slope” methoddescribed in the textandu,(r) does to

. . . . those using the “intersection” method. Calculated Taylor length
local slopegp(r), we rewrite Eq(10) in the following form: and the integral length are marked for convenience.

&

p

not given here{,/p is fitted by a straight line for &£p
=<6. The curve is deviated upward from the straight fitting
line for p=7 and downward for &p<1. Hence the com-
What is the range op? To decide the range we calculated parison will be made in the rangeslp<6, but the intermit-
¢p(r) for various values op at units of 0.1 ar/»=24 for  tency coefficienj(r) estimated there plays a significant role
R\=121, and plotted ,/p againstp. Although such a plotis to represent even the whole intermittency effect.

12

1 M(r))_M(r)

3776 18 »
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Figure 3a) shows a curve,(r)/p vs p for several values The flat region wherg.(r) is constant appears in between
of r/» with R, =69. Straight lines in this figure are the bestr/»~100 andr/%~300 for the highest Reynolds number
fit lines for 1<p=<®6. The data points fqp="7, which are not R, =459[see Fig. &)]. In such an interval.(r)~0.25. This
included for the comparison, are slightly deviated from thevalue is consistent with those known in literature for obser-
Iog-normal lines as mentioned above. Intermittency indEXVations Corresponding to very |arge Reyn0|ds number
w(r), can be calculated from this figure using the slope of[20,21].
the fitting straight lines or the intersection point of the fitting |t should be noted that strong tubelike vortices are be-
straight lines with vertical axifcf. Eq. (12)]. The calculated  |igyed to be sparsely distributed in space in fully developed
values ofu(r) are shown in the inset of the Fig(e (41 tyrbulence[9,22]. Those vortices are frequently assumed as
corresponds to .calculauons' using 'ghe “slope” methOd'Burgers' vortex with mean radius 022]. The energy dis-
whereas, are g|ven_by the “Intersecthn” methodin the sipation takes place strongly around those vortices. There-
plot of u(r) Taylor microscale. and an integral scale are fore extreme intermittency of the energy dissipation at this

rkr;]%rvlf,id :g(rji;[(i)on%igie;/ceﬂllvleslﬂs\l/g a%%nil;denggi I\:A(I)?”- scale is consistent with the observation of the maximum of
b = A kY (r) at scaler =14%. On the other hand, the usual scaling

Reynolds numbers 259 and 459 we have obtained simila{f

) . . egion, where/,(r) as well asu(r) are independent of scale
gg:rtr:gersc‘e(szll?& 3b and 3c Other Reynolds numbers give the in a certain interval of scale, can be seen only for largest

As seen from Figs. @) to 3(c), u(r) substantially de- Reynolds numbeiR, =459 in the present work. Such a scal-

pends onr with a typical “two-maxima” shape. Even for ing region is located for>N\; in our simulation the scaling
R, =69 in Fig. 3a) there is a small peak arourrd,~ 10. region starts from approximately 2.5
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interesting properties(l) For R,=50 the maximum is not search(C-2) 12640118 from the Japan Society for the Pro-
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(normalized by») is independent of Reynolds number, andtheir support. T. Ochiai at NIT is also acknowledged for
takes value”’;~ 147, which is actually the beginning of the his assistance in numerical computation involved in this
dissipative region(lll) Value of u(/;) scales withR, as  work. One of the authors, A.B., is grateful to C. H. Gibson
w(71)~R%%, (IV) The scale\ is located on the right de- and K. R. Sreenivasan for numerous discussions on the
scending hill. problem.
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